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The solution of practical problems associated with determination of the shock-wave configuration that
results from the interaction of a stationary plane skew shock wave (SSW) with the interface of two
media, is invariably related to determination of the critical angles of the interaction. The author sug-
gests a method of analytical calculation of one of these angles within the framework of the applicabil-
ity of the hydrodynamic theory of shock waves, namely, the angle of total refraction, denoted by ϕt in
some of the indicated works.

Study of shock-wave configurations that result from break decay occurring in emergence of a stationary
skew plane shock wave on an immovable plane interface between two media [1-4] has made it possible to
establish that the form of the configuration and, consequently, the properties of the flow behind it depend com-
pletely on the relation between the angle of incidence and two characteristic angles: the angle ϕc of change of
the pattern of the flow behind the skew shock wave from supersonic to subsonic and the angle ϕt of total
refraction. The angle ϕc characterizes the material over which the initial skew shock wave moves, and in most
cases it can be calculated analytically [1, 3]. It is more difficult to calculate ϕt, since it determines a two-wave
break decay on the interface (Intf) of different-density media, when at the contact point two plane skew shock
waves come in contact: the initial wave and the refracted wave (Fig. 1). To accomplish this calculation, it was
usually necessary to solve a complicated transcendental equation [1-4]. We will show that ϕt can be found
analytically proceeding from relations for the parameters of the flow behind the front of the skew shock wave
that are general for the hydrodynamic theory of shock waves.

Let the space in the plane of the drawing (Fig. 1) be divided by the interface into two half-spaces; here
the upper half-space is filled with a substance described by the equation of state p = f(m), and the lower one,
by the equation of state p = g(n), where m = ρ0,H

 ⁄ ρH and n = ρ0,L
 ⁄ ρL  (n ≤ 1, m ≤ 1). The velocity of the

initial skew shock wave is D, while the interface is immovable. On realization of the regime of total refraction
(Fig. 1) in a coordinate system tied to the contact point, the pressure jump behind the front of the skew shock
wave and the refracted shock wave (RfrSW) can be written as follows:

pH − p0,H = ρ0,Hq2 sin2 ϕt (1 − m) ,   pL − p0,L = ρ0,Lq2 sin2 ϕL (1 − n) , (1)

where p0,H = p0,L = p0 and q = D ⁄ sin ϕt. The steadiness of the interaction is attributable to the fulfillment of
two conditions: the pressure and the component of the flow velocity normal to the interface must coincide on
both sides of this interface. The first steady-state condition and Eq. (1) give a relation between ϕL and ϕt:

sin ϕL = sin ϕt √


α 

1 − m
1 − n




 , (2)

where α = ρ0,H
 ⁄ ρ0,L. The quantities m and n should be considered to be known, since m can be determined

from the relation
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f (m)
p0

 − 1 = 
ρ0,HD2

p0
 (1 − m) , (3)

while n can be determined from the equality g(n) = f(m). In writting the second steady-state condition, we
should seek an expression for the total velocity qH and the angle of rotation of the flow ϑ behind the skew
shock wave and the refracted shock wave. The continuity condition for the flow through the surface of the
skew shock wave (Fig. 1) is

UH = mU0,H . (4)

The flow component parallel to the front of the skew shock wave does not experience changes; this means that
the total velocity of the flow behind the skew shock wave is

qH = √  V0,H
2  + UH

2  = √ V0,H
2  + m2U0,H

2  = q cos ϕt √ 1 + m2 tan2 ϕt  , (5)

while the angle of rotation is

ϑH = ϕ − arccos 
V0,H

qH

 = ϕ − arccos √



1

1 + m2 tan2 ϕt




 . (6)

The component of the flow velocity normal to the interface is

wH = qH sin ϑH = qH sin 






ϕ − arccos √




1

1 + m2 tan2 ϕt











 . (7)

Having performed simple trigonometric transformations and having substituted the value of qH from Eq. (5)
into Eq. (7), we obtain

wH = q (1 − m) sin ϕt cos ϕt . (8)

After completely analogous operations carried out for the refracted shock wave we have

wL = q (1 − n) sin ϕL cos ϕL (9)

and using the second steady-state condition (wH = wL), we write

1 − m
1 − n

 sin ϕt cos ϕt = sin ϕL cos ϕL . (10)

Simultaneous solution of Eqs. (2) and (10) makes it possible to obtain an exact formula for determining the
angle of total refraction in the approximation of the hydrodynamic theory of shock waves:

Fig. 1. Scheme of break decay in total refraction.
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ϕt = arcsin √










1 − 
1 − n
1 − m

 α

1 − α2









  .
(11)

Equation (11) confirms the conclusion [1-3] that ϕt is a parameter that characterizes a pair of materials (media)
in contact on the interface under the given conditions of interaction (the parameters m, n, and α depend on D
and are determined from the equations of state and the initial densities of the media).

Analyzing Eq. (11), we note that there are two domains of existence of ϕt, depending on α: 1) α ≤ 1
and 2) α > 1. In the first case, the break decay corresponds to [1-3], when the "upper" material is lighter than
the "lower" (Fig. 1). Then, as α → 0, ϕt = arcsin (1) → π ⁄ 2; for a rigid surface, α = 0 and ϕt = π ⁄ 2. For
materials close in characteristics, when α → 1 and m and n can be considered to be close in value
((1 − n)/(1 − m) ≈ 1), ϕt → arcsin (1 ⁄ 20.5) = π ⁄ 4. In the opposite case (α > 1, the "upper" substance is heavier
than the "lower" one), for close materials the result will be as previously, but for very large α we have ϕt →
arcsin (0) = 0. A more specific form of the dependences ϕt(α) and ϕt(D) for certain pairs of materials with
different characteristics and aggregate state is given in Fig. 2. 

In conclusion the author expresses his gratitude to Academician O. V. Roman and G. S. Romanov for
constant support and interest shown by them in this work.

NOTATION

p, pressure; q, total flow velocity; U, component of the flow velocity perpendicular to the shock-wave
front; V, component of the flow velocity parallel to the shock-wave front; w, component of the flow velocity
perpendicular to the interface; D, velocity of the shock-wave front; m and n, ratio of the densities ahead of and
behind the shock-wave front for the "upper" and "lower" medium, respectively; ρ, density; ϕ, angle between
the corresponding shock wave and the interface; ϑ, angle of rotation of the flow behind the front of the corre-
sponding skew shock wave; α, ratio of the initial densities of the "upper" and "lower" medium. Subscripts: t,
angle of total refraction; H and L, upper and lower half-plane, respectively; 0, initial values.
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Fig. 2. Dependences ϕt(α) for α ≤ 1 (a) and α > 1 (b) and ϕt(D) (c) for
the systems air−krypton (1), krypton−air (2), air−CO2 (3), and CO2−air
(4). All values of the angles are given in degrees.
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